
Constraint-based Document Presentation

Wayne A. Christopher �

Computer Science Division (EECS)
University of California
Berkeley, CA 94720

October 1990

ABSTRACT

Constraint-based programming has been used for a wide variety of ap-
plications where declarative speci�cation and general solution mechanisms
are desirable. This paper describes a prototype document preparation sys-
tem, Ensemble-C, that utilizes constraint satisfaction as a mechanism for
presentation maintenance and incremental formatting. The goal of the over-
all Ensemble project is the integration of a wide variety of media, includ-
ing computer programs and dynamic media such as sound and animation,
into a coherent framework that provides incremental formatting, multiple-
representation editing, and separate structure and presentation speci�cation.

�Sponsored by the Defense Advanced Research Projects Agency (DARPA), monitored
by Space and Naval Warfare Systems Command under Contract N00039-88-C-0292, and
in part by the National Science Foundation Infrastructure Grant number CDA-8722788.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1990 2. REPORT TYPE

3. DATES COVERED
 00-00-1990 to 00-00-1990

4. TITLE AND SUBTITLE
Constraint-based Document Presentation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Constraint-based programming has been used for a wide variety of applications where declarative
specification and general solution mechanisms are desirable. This paper describes a prototype document
preparation system, Ensemble-C, that utilizes constraint satisfaction as a mechanism for presentation
maintenance and incremental formatting. The goal of the overall Ensemble project is the integration of a
wide variety of media, including computer programs and dynamic media such as sound and animation,
into a coherent framework that provides incremental formatting, multiple-representation editing, and
separate structure and presentation specification.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

52

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Ensemble is a multi-media multi-representation language based edit-
ing system. It is intended to be a framework for the integrated support of
interactive development of complex natural language and formal language
documents. The system will provide multi-media capabilities, as well as fa-
cilities for formal description of syntax, semantics, and transformations of
structured objects and representations.

The user will be able to view and edit compound documents composed of
many types of components represented in a variety of media. The editing and
viewing capabilities will handle these heterogeneous structures in a natural
and convenient way.

The system will enable the user to edit and view documents in many
views simultaneously. For example, views might present certain portions
of a document and hide others, as in program holophrasting. They might
display the logical structure of a document explicitly, as in a tree-structured
representation. They might display formatting or other directives to the
transformation process, as in the source view of a formatting system. They
might display the output of such a transformational process, as in the proof
view of a formated document or the pretty-printed view of a program. The
support for a rich set of media types will provide an opportunity to enrich
the possible kinds of views signi�cantly.

The version of Ensemble described here is Ensemble-C, where the \C"
stands for \Constraints". Another version ofEnsemble is being developed in
our group which focuses on the editing of programs and is based on the Pan
1 system [Ballance et al. 1990]. This report will not discuss the language-
editing mechanisms of the system. A general overview of the Ensemble
project will be given in a forthcoming technical report.

The central ideas used in Ensemble-C are the clear separation of struc-
ture from appearance, integrated editing for all media types, simultaneous
editing of multiple representations of a single document, and the use of con-
straints as a unifying mechanism for presentation.

Systems such as LaTEX[Lamport 1986], Scribe, [Reid 1980] and Grif
[Quint and Vatton 1986] have all emphasized the independence of logical
structure and appearance, and Quill [Chamberlin et al. 1987] has as a goal
the seamless integration of di�erent object types. Both VorTeX [Chen 1988]

and Lilac [Brooks 1988] allow the editing of text documents in both a direct
manipulation view and a structural language view at once.

Constraints have been used for graphical user interfaces inGarnet [Myers

1

et al. 1989], physical simulation in ThingLab [Borning 1979], and electrical
simulation [Steele 1980]. Other work in constraint-based programming is
described in [Leler 1988], but our notion of constraints is closest to that of
ThingLab. Constraints will be described further in Section 5.

1 Overview

In Ensemble-C, documents are represented as trees. The nodes of the trees
are objects such as paragraphs, words, and statements in a programming
language, and the arcs correspond to logical inclusion.

Document trees cannot be edited or looked at directly. Rather, the doc-
ument is presented to the user via one or more views, or ways of looking
at a document. A view may elide certain parts of the document, or present
them in an order di�erent from that in the base document tree. Views al-
ways display the most current presentation of a document available, and
incrementally update this presentation when the base document changes.

The basic document tree contains only the minimal information necessary
to specify the document, and is common to all views. All other data is kept
in the views that need it. This includes formatting data for proof views
of text and rendering information for graphical views. Most view data is
transient { it can be recreated from the base document when needed { but
there can be permanent view data that should not be thrown away, such as
user modi�cations to the appearance of a particular view.

A view can appear in a window. If a view is thought of as an in�nite
plane, a window can be thought of as a rectangular portion of this plane.
A window also has a cursor, which may point to any part of the document
tree. The notions of windows and bu�ers found in Emacs [Stallman 1986]

roughly correspond to ours, except for the intermediate view structure placed
between them.

Note that for dynamic media such as animation and sound, more general
models of windows and views will have to be formulated. Although this
work is currently in progress, in this paper we will limit our discussion to the
facilities necessary for supporting static media.

Since the goal of Ensemble is multi-media editing, it must support many
di�erent types of nodes in the document tree { text, graphics, sound, video,
and so forth. Although each of these major types has many sub-types, such as

2

words and paragraphs, these divisions are basic enough to allow us to group
together a great deal of functionality for each one. We call these major types
genres, and encapsulate all genre-speci�c code and data in genre modules.
These include the following types of information.

� Structural schemas, which are essentially grammars that direct the
editor in creating documents. A structural schema de�nes an allowable
document structure for a particular genre.

� Presentation schemas, which are sets of rules for enforcing the re-
lationships between document components in views. In some other
systems, this function is carried out by \style �les". Since Ensemble
is designed to be interactive and to support a wide variety of media
types, we require a more complex model than a simple listing of pa-
rameter values. Our presentation schemas utilize constraints and rules
for when these constraints should be activated.

� Rendering methods, used by the graphical output system to draw
objects that have a visual representation. The window package provides
certain primitives for the rendering methods to use, but in general every
visible facet type must have its own rendering methods.

� I/O and translation mechanisms, which are required for saving
di�erent object types to disk and importing or exporting them to other
representations, such as TEX.

2 Views and Facets

One way to think of the relationship between views and the base document is
that each view annotates the document tree with its own view data, such as
font information for a pretty-printing view, or exact positions of objects on
the screen for a view of a �gure. This was the approach taken in the Pan 1
system [Ballance et al. 1987].

Another way to think of this is that each view constructs its own parallel
tree, which is usually similar to the basic document tree, to hold its own
data. Since the nodes in these trees can have explicit pointers to the corre-
sponding nodes in the other tree, the functionality is the same as that in the

3

annotations model. As will be seen, however, there are other bene�ts to the
parallel trees model that make up for its increased complexity and overhead.
For example, if we wish to construct views of other views, rather than views
of the basic document, or if we wish the view tree to have a slightly di�erent
structure than that of the base tree, which is a common occurrence, having
separate trees is very useful.

Ensemble-C uses the second model of views. The base document tree
is also treated by the system as a view, and is referred to as the base view.
We say that one view is derived from another if it depends on that view.

We call the nodes in these trees facets. This is most apt for the nodes
in view trees, since each can be thought of as one way of looking at a many-
sided object. Every facet has an owner, which is in the base view, or, more
generally, in the view that this facet's view is derived from. Note that more
than one facet in a particular view may be owned by the same facet in the
base view. For example, in the base document structure, an if statement
contains three sub-parts: the condition, the true block, and the false block.
In a pretty-printed view, it contains these three parts, but it also contains
facets that represent the words \if", \then", and \else". They are owned
by the if facet in the base document tree, whereas the other three facets are
owned by the corresponding facets in the base view.

An example of a view that doesn't depend on the base view is a paginated
view of a text document. The �rst level view uses an in�nite scroll model,
without page breaks. The paginated view, which depends on this one, ar-
ranges the paragraphs, possibly breaking them in the middle, into �xed-size
consecutive pages. The major structural di�erence is that one paragraph
may own two or more paragraph segments, and the words that are children
of the paragraph will be children of these segments in the paginated view.

It is important here to distinguish the concepts of facet parenthood and
facet ownership. The parent of a \paragraph-proof" facet might be the
\section-proof" facet it belongs to, in the same view. Its owner will be the
corresponding \paragraph" facet in the base document tree. A \paragraph"
base facet might own facets of type \paragraph-proof", which in turn might
own facets of type \paragraph-proof-paginated".

Thus there are a number of ways to look at the tree-structuredness of a
document, as pictured in Figure 1. First, one may consider the tree of views
currently in use. Second, one may pick a particular view and look at the
hierarchical structure of the document within that view. Third, one may

4

Base
View

Source Unpaginated

Paginated

section

paragraph

word word

(a) View (b) Facet (c) Ownership

paragraph

paragraph-
 proof

para-segment-
 paginated

para-segment-
 paginated

Figure 1: Tree Structures

pick a particular object, say a paragraph, and, following the tree structure
of the view hierarchy, look at the facets which are indirectly owned by that
object. Note that this tree may not be isomorphic to the view tree in (a),
since a facet may own more than one facet or no facets at all in a particular
view.

3 Architectural Overview

In this section, the basic structure of Ensemble-C will be described. There
are four main components of the system. The relationships between these
components are shown in Figure 2.

1. User interface. This reads commands from the user and passes them
to the editor core. It also accepts graphical output requests from the
genre-speci�c rendering code and manages windows.

2. Editor core. The editor accepts commands from the user interface and
makes appropriate modi�cations to the base document tree. When it
is �nished, it asks the constraint system to bring all the views of the
document up to date.

3. Constraint system. Consistency between views is maintained by
means of constraint satisfaction. After the editor has modi�ed parts of
the graph, the constraint system must �rst bring the structure of the
constraint graph up to date, and then must modify the values of the

5

User Interface

Editor
Core

Constraint
 System

 Genre
Module

commands

changes

changes

rendering

editing

parameters

Figure 2: The Basic Structure of Ensemble

objects in the graph so that they satisfy the constraints. This will be
explained in the section on constraint satisfaction.

4. Genre-speci�c modules. The genre module contains rendering code,
which is invoked by the constraint system whenever a facet is deter-
mined to have changed in such a way as to require redisplay. Addition-
ally, it contains structural and presentation schemas, and facet-speci�c
routines and commands that can be called by the editor.

3.1 User interface

The user interface consists of two packages, one to handle user input, and
one to handle graphical output. For simplicity, these are rather loosely cou-
pled. When the user makes a modi�cation to the document, the
ow of
control passes from the input module to the editor core, to the constraint
system, and �nally to the graphical output package. There is no provision
for short-circuiting between the user input package and the graphics pack-
age yet, although this will probably turn out to be necessary for adequate
performance.

6

Each window has a cursor, which can point at any facet in the document
tree. In the case of a leaf facet with further substructure, such as a word,
the cursor may have a location within the facet. In the case of a word this is
an index into the string. All operations are done using the cursor, although
a selection mechanism is currently being developed [Munson and Pan 1990].

Currently, the user interface maps control keys to commands by means of
a static table. Other interaction with the user is done through the standard
input and output of the Ensemble-C process, which is rather awkward.
Instead of improving the current user interface, we expect to replace it and
the editor core with the Pan editor [Ballance et al. 1990, Ballance and
Van De Vanter 1987].

3.2 Editor core

The editor core is responsible for interpreting and performing commands
given by the user interface, and managing the event queues that drive the
presentation system.

3.2.1 Commands

There are a number of types of commands that the editor handles.

� Cursor movement commands such as \move up" or \move to next
leaf node" are relatively straightforward { the editor calculates the
correct facet to move to, and tells the window module to move the
cursor appropriately.

� Object modi�cation commands cause �elds in the base facets to
change in facet-speci�c ways. These changes trigger the constraint
satisfaction process.

� Structure modi�cation commands include creation and deletion com-
mands. These cause the base document tree to be modi�ed, along with
the facets that are owned by the a�ected base facets. These operations
trigger both constraint graph maintenance and constraint satisfaction.

� System commands, such as \create document", or \output PostScript
�le", are dealt with on an ad-hoc basis.

7

The structure modi�cation commands take a number of forms. The sim-
plest one, which is bound to the space character, creates a sibling of the
current facet with the same type. A command to create a sibling of the
parent facet is bound to the return key. In the case of words and paragraphs,
these are the usual semantics of these keys. Also, a command to allow the
user to select from a range of facet types is bound to the combination control-
space { if the parent of the current facet is a sequence node 1, and it can
contain children of more than one type, the user is prompted to choose one
of them. The control-return function is similar.

3.2.2 Facet Creation

The mechanism for creating new facets is rather complex. This is because of
the wide variety of options that can be given, both for the positioning of the
new facet in the tree, and for the actions that should be taken with regard
to the subtree below the newly created facet. We create new facets in the
following situations.

� Creating a new (empty) document. We would like to create the root
facet in the base view, and let the structural schema guide the creation
of all the required children of the root, and their required children
recursively.

� Reading a document in from a �le. In this case, the entire structure of
the document is speci�ed, and we want to create exactly the facets de-
scribed. However, we may want to check the correctness of the structure
with respect to the structural schema to which it claims to conform.

� Building a view tree in response to changes in the base tree. In this
case, we also want to create facets without referring to a structural
schema, since only the base view is governed by structural schemas.

3.2.3 Event Queues

The internal process of presentation maintenance is event driven. Every
change made to a view tree is noted in a number of queues { the presen-

1As a matter of policy, whenever a list of unspeci�ed length is called for, a special node
called sequence is used to contain the facets in the list. No other facet types are allowed
to have arbitrary numbers of children.

8

tation queue for that view, and the structure queues for all the views
that are derived from it. Events in the presentation queues cause constraint
graph maintenance, as described in Section 5, and events in the structure
queues cause the structure of the views to be updated.

Events in Ensemble-C are serviced according to the following priorities.

1. Input from the user.

2. Events in structural queues.

3. Events in presentation queues.

4. Constraint graph solution.

5. Facet redisplay.

3.3 Genre-speci�c modules

A number of things must be done specially for every genre.

� Facet types must be de�ned. Some facet types are built-in, such as
\sequence", but most have special properties. For instance, words have
strings as values, whereas most facets don't have values.

� Methods must be de�ned to modify facets that are capable of modi�ca-
tion. The system de�nes a few generic change types such as \add char-
acters", and lets the facets implement the speci�cs themselves. Note
that other types of changes such as \delete node" are done by the editor
directly.

� Facets that can draw themselves must have their own \render" meth-
ods.

� Constraint types and presentation rules must be de�ned for every view
of every genre.

� Structural schemas must be provided for the editor.

9

4 Structural Schemas

In several places in Ensemble-C, it is necessary to describe either an ac-
tual structure, or a grammar rule for building a structure. In the structural
rewrite rules for maintaining view trees, we need to describe the facets that
must be created in response to a change in the base view. A printed represen-
tation of the document tree must be generated or parsed when a document
is saved to or read from a �le. In the defgrammar form used to de�ne a
structural schema, we also have to describe a tree structure, although we are
specifying rules instead of an actual tree. These cases are similar enough
that the same mechanism and notation is used for all of them.

The basic element of a structure description, the facet entry, has the
following form.

(type [keyword value] : : :)

The keyword may be any of the following.

� :children. The corresponding value is a list of child speci�cations.
These are of the form

(name type [min] [max])

where name is the name of the child, such as :title, type is either a
symbol that speci�es the type of child that can go in this position or
another facet entry, and min and max determine the permissible num-
ber of elements that can be present here. The min and max arguments
can only be used if the type argument is a symbol, and are really only
a convenient abbreviation for explicitly describing the sequence facet
that should go in this position. max can be *, which indicates no limit
on the size of the sequence.

� :id. The value is the unique id of this facet. This is required in some
cases where we need to preserve information such as the links between
a citation and the bibliography entry it refers to. If an id isn't given
the system will generate a unique one for the facet when it is created.

� :owner. The value is the unique id of the facet that should be the
owner of this one. This is required for structural rewrite rules, described
below.

10

� :slots. The value is a list of slot-name, slot-value pairs. Each slot-value,
which must be a a string, number, keyword, or list structure containing
these, is inserted into the named slot in the facet. The value of a slot
may also be another facet, in which case the id of that facet should be
given instead.

An example of a structural description used in a grammar is:

(section :children ((:title block)

(:blocks block 0 *)

(:sections section 0 *)))

The *" max argument denotes that there are no limits on the number
of children that may appear in the sequence.

An example of a structural description used in a structural rule is:

(paragraph :id g0 :children

((:body (sequence :children

((nil (word :id g1 :slots ((value "Test"))))

(nil (word :id g2 :slots ((value "Stuff")))))))))

This di�ers from the previous example in a number of ways. First, all
child entries are full facet descriptions rather than just names. Since we want
to express the detailed structure of the subtree rooted at this point, this is
necessary. Second, facet ID's are included, which are needed for preserving
certain structural information like cross references. Third, slot information
is given for the words.

Structural descriptions are also used as document tree grammars, or struc-
tural schemas. A structural schema is created with the make-grammar func-
tion. For example:

(make-grammar *text-genre* "article"

'((document :children ((:title paragraph)

(:body block 1 *)))

(block -> paragraph foreign)

(paragraph :children ((:words word 1 *)))

(foreign)

(word)))

11

The �rst argument, *text-genre*, speci�es a genre object that this
grammar should be associated with. The second argument is the name of
the document type being de�ned, in this case "article". Then follows a
structural description of the valid structure for this document type.

In addition to this form of structure description, macros may also be used
in make-grammar forms. An entry of the form

(name0 ! name1 : : :nameN)

makes it possible to use name0 in a child entry, in which case the system will
allow any of the succeeding name i's in that position.

The last two facet types given in the example, foreign and word, have
no information speci�ed other than their name. This is because the foreign
facet name is really a placeholder for a subtree of another, unspeci�ed genre,
and words are leaf nodes in the text genre and thus have no children.

More complete examples are given in the appendices.

5 Presentation Schemas

InEnsemble, the appearance of documents is described using presentation
schemas. These schemas allow the document designer to specify formatting,
and in general, mappings from one view to another, in a convenient and
general way. The language described here, henceforth referred to as PSAL
for Presentation Schema Assembly Language, is general and powerful,
but is neither especially convenient nor readable.

It is expected that di�erent types of documents will require di�erent sorts
of higher level schemas. For instance, the mechanisms for describing the for-
matting of text documents are quite di�erent from what would be useful for
describing animation. PSAL is intended to be general enough to include the
semantics needed for these di�erent applications, and straightforward enough
that a schema compiler can easily translate from a higher-level language to
PSAL.

In addition to a schema compiler, it is expected that a set of library rou-
tines will be provided for use by the schemas. For instance, a text genre might
have a linebreaking algorithm coded as a library routine. Some examples of
library routines are mentioned in this paper, but facilities for managing them
are not described.

12

In this discussion, examples are drawn primarily from the simple text
genre presented in Appendix A, although none of the presentation system
as it currently stands is text-speci�c. However, as a wider variety of doc-
ument types are included in Ensemble, especially dynamic media, PSAL
will probably evolve substantially from its current form.

5.1 Basic Principles

The fundamental concept used in PSAL is that of constraint satisfaction.
Conceptually, constraints are declarations about what relations must hold be-
tween document components. For instance, \two paragraphs in a sequence
must be 15 points apart" is one constraint that might be given. The con-
straint system sees the document as an unstructured collection of nodes that
are linked by constraints among them. It has no intrinsic notion of either
parent-child relationships or facet ownership. Rather, it is up to the editor
and the genre-speci�c code to embody the intended semantics of these rela-
tionships in appropriate constraints. For example, between every facet and
its children, there is a constraint that states \the parent's bounding box must
contain the bounding boxes of all children", but this constraint is created as
the result of an externally-speci�ed rule.

Maintaining presentations by means of constraints has a number of im-
portant advantages. First, constraints are very convenient, since they are
declarative and the document designer or the user need not concern himself
with how they are satis�ed, as long as they are. This places the burden
on the system designers to ensure that Ensemble-C can maintain the sys-
tem of constraints correctly and e�ciently. Fortunately, there are general
mechanisms for accomplishing this, which will be discussed in the sections
on constraint graph maintenance and constraint solution.

Second, constraints are a powerful mechanism for expressing a wide va-
riety of relations. For example, the animation system can provide rules for
creating the equations of motion required for a particular system of objects,
and allow the constraint system to select an appropriate method for solving
them. This has the advantage that these constraints, which are really di�er-
ential equations, can be easily mixed with time-independent constraints that
tie the animation to other types of media in the document. Once we have
resolved the issues of speci�cation, the problem then becomes one of ensuring
that the constraint system is able to solve these mixed systems e�ciently.

13

Constraints have been used for graphical user interfaces inGarnet [Myers
et al. 1989], physical simulation in ThingLab [Borning 1979], and electri-
cal simulation [Steele 1980]. Our concept of constraints is closest to that of
ThingLab { a constraint is like a black box that can be attached to a num-
ber of variables, and has an error function and a number of satisfaction
functions. The error function tells whether the constraint is satis�ed, and
the satisfaction functions may be called in order to modify the arguments to
satisfy the constraint.

While constraints are a mechanism for enforcing a set of relationships
among the values in a system, if the structure of the system is being dynam-
ically modi�ed, there must be a mechanism to maintain the structure of the
constraints. When we change the structure of our document, we will usually
have to create some new constraints and remove or modify old ones. In this
paper, we will refer to this process as constraint graph maintenance, and
the process of modifying the values that are related by the constraints in such
a way as to satisfy the constraints as constraint satisfaction.

Maintaining a presentation of a document as it is being modi�ed thus has
a number of aspects. First, we have to ensure that the structure of each view
tree is consistent with the structure of its owner (that is, of the tree that
represents the view it is derived from). Note that since \consistent" does not
mean \identical", this is a non-trivial task.

Second, we have to ensure that the appropriate constraints are in place for
a view tree. What constraints are appropriate must be expressed by means
of presentation rules. These rules can be thought of as a predicate, which
is a statement about the structure of the view tree, and a constraint that
should exist for each location in the tree where the predicate is satis�ed.

Third, we have to make sure the constraints are satis�ed by the values in
the tree. Some of the values shouldn't be modi�ed by the system, such as
user-supplied text, but others can be, such as the positions of words. Two
things require constraint satisfaction to be done. One is the addition of new
constraints, which might happen when a word is added to a paragraph. The
other is the modi�cation of a value that is constrained, such as the textual
value of a word (and thus its bounding box).

These tasks suggest a three-stage process for presentation maintenance.
First, we map any changes in the base tree to the view trees that depend on
it. Second, we examine these changes and modify the constraint graph ap-
propriately. Third, we invoke the constraint satisfaction process. Of course,

14

in many cases we can skip the �rst two steps.

5.2 PSAL Descriptions

PSAL is built on top of the Common Lisp Object System (CLOS). Facets
are instances of classes that inherit from a base facet class.

The two types of forms found in a PSAL description are constraint
de�nitions, which use the defconstraint form, and facet de�nitions,
which use the deffacet form.

The deffacet form contains the name of the facet, a list of the CLOS
classes that this facet should inherit from, the name of the presentation
schema that this facet de�nition belongs to, and a list of keyword-value pairs
that provide additional information about the facet type. Most of the rules
discussed in the rest of this paper are expressed in this way.

An example of a PSAL description for a text genre will be given in A.
Here is a typical deffacet statement from this description:

(deffacet itemize-proof *article-proof-default* (block-proof)

(:structure :replace-sequence-child :element-list :element

(element-proof

:children ((:tag (word-proof

:slots ((value "*"))))

(:item (child)))))

(:rule (y-separation (:sequence-child (:self) :element-list)

(:sequence-child (:self) :element-list)

(:next-child (:self) :element-list) 10))

(:owner-type itemize)

(:documentation "Itemize environment."))

5.3 Structural Rules

Structural rules provide mappings from the base tree to the view tree. These
rules are given in the deffacet forms for the particular view, since it is not
feasible for the schema for the base view to know about all the views that
might be derived from it.

15

5.3.1 The :structure Form

In some cases the base tree and the view tree are very similar. For example,
a paragraph facet in the base tree generally corresponds to a paragraph-
proof facet in the view tree for a proof view type. In such cases, when the
facet is created in the base tree, the system by default creates the appropriate
facet in the view tree, and sets up a link between them. The facet in the
base tree then becomes the \owner" of the view facet.

In other cases, the structure of the view tree di�ers somewhat from that
of the base tree. For instance, in our example genre, the items in an itemized
list are represented as a list of blocks (that is, paragraphs, itemized lists,
�gures, and similar objects). In a proof view, however, each item must have
a bullet. The structure of the itemize-proof sub-tree re
ects this: instead
of a list of blocks, it contains a list of \elements", each of which contains a
tag and a block. The rule for creating this structure, which is contained in
the de�acet form for itemize-proof, looks like this:

(:structure :replace-sequence-child :element-list :element

(element-proof :children

((:tag (word-proof :slots ((value "*"))))

(:item (child)))))

This example illustrates the use of the :structure keyword. Its operands
consists of: (1) an operation, in this case :replace-sequence-child, (2) the
name of one of the children of the facet, in this case :element-list, (3) the
new name to be used for the child, :element, and (4) a description of what
should be done with objects that appear in the named child. The interpre-
tation of the last part depends on what the operation is. In this case, it is a
structural description of what should replace a child of the sequence node
that is the :element-list child of the itemize facet.

The special facet type name child is replaced by the facet that would
have been created had there been no special :structure rule. Thus the e�ect
of this structure rule is to wrap each block in the list with an element-proof
facet.

There are a number of other structural operations that can be speci�ed.

� Insert something into the facet's child list before (or after) the named
child. For instance, when we format an abstract, the simplest way to

16

get the word \ABSTRACT" before the text is to add another child to
the document facet. This is accomplished with the following rule in
the document-proof facet de�nition:

(:structure :insert-before :abstract :abstract-word

(word-proof :slots ((:value "ABSTRACT"))))

The :insert-afteroperation is similar. There are also :insert-start
and :insert-end operations that place the speci�ed objects at the be-
ginning and end of the facet's child list.

� Replace a child of the facet with something di�erent. There are two op-
erations that do this: :replace-child and :replace-sequence-child.
The second one actually replaces a grandchild of the facet. An exam-
ple of :replace-sequence-child is given above for the itemize-proof
facet.

� Sort the items in a sequence. One might want to do this in a bibliog-
raphy, for instance. The declaration for this is:

(:structure :sorted :entries :entries

(lambda (ent1 ent2)

(string-lessp (bibentry-proof-tag ent1)

(bibentry-proof-tab ent2))))

The description part of the declaration is a comparison function that is
used in the sort, the arguments of which are elements of the sequence.

� Make arbitrary changes to the structure rooted at this facet. There
may be arbitrarily complex rules for such operations as formatting a
bibliography entry, where the logical components are the title, author,
and so forth but the formated version is basically a paragraph composed
of the words contained in these components.

In order to deal with such cases, we allow an escape into Lisp. Here is
the structural rule for creating bibliography entries, which is given in
the deffacet form for bibentry-proof.

(:structure :rewrite t

(lambda (body)

(format-bib-entry body)))

17

This rule should be interpreted as follows. The argument after :rewrite
speci�es which children should be used as input to the rewrite process.
The value tmeans that all children of the bibentry facet should be fed
to the function given. This function takes as its argument a structural
description of the requested children, for example:

((:author (paragraph :id g0 :children

((:body (sequence :children

((nil (word :id g1 :slots ((value "Bob"))))

(nil (word :id g2 :slots ((value "Dobbs"))))

))))))

(:title (paragraph :id g3 :children

((:body (sequence :children

((nil (word :id g4 :slots ((value "The"))))

(nil (word :id g5 :slots ((value "Title"))))

))))))

(:year (word :id g6 :slots ((value "1492")))))

Its return value should be the description of the new children that
should be created:

((:body (paragraph-proof :children

((:body (graphical-seq :children

((nil (word-proof :slots ((value "[Dobbs 1492]"))))

(nil (word-proof :owner g1 :slots ((value "Bob"))))

(nil (word-proof :owner g2 :slots ((value "Dobbs"))))

(nil (emphasis-proof :children

((:items (graphical-seq :children

((nil (word-proof :owner g4

:slots ((value "The"))))

(nil (word-proof :owner g5

:slots ((value "Title"))))

))))))))))))

(:tag (word-proof :slots ((value "[Dobbs 1492]")))))

Note that the input description is in terms of the base view, and the
output description is in terms of the derived view.

The details of how the format-bib-entry function works are not il-
luminating. As more experience is gained in writing presentation de-
scriptions, the role of the :rewrite construct hopefully will diminish,
since other constructs will be added to cover the more common cases
that haven't been thought of yet.

18

5.3.2 Default Facet Types

Facets in the derived view are associated with ones in the base view by means
of the :owner-type keyword. The keyword-value pair

(:owner-type paragraph)

means that this facet is in general owned by paragraph facets in the base
view for this view type. When no :structural rules have control over a
particular facet, the default action is to create the one that is owned by the
one created in the base facet.

5.3.3 Base View Forms

Most of the above forms are useful only for derived views. In the base view,
there are a number of things we need to describe that are not required for
derived views.

When an object is created, sometimes it is necessary to �ll in some slots in
arbitrary ways. For instance, the citation facet has a slot to hold a reference
to the bibentry object being cited. The :creation keyword is used for this
purpose:

(:creation :initvalue citation-entry

(lambda (facet)

(get-facet-from-user 'bibentry)))

The argument :initvalue citation-entrymeans that the initial value
of the slot should be obtained by evaluating the code given. In this case, it
calls a routine to prompt the user for a bibliography entry to be cited.

5.4 Presentation Rules

After the new structure of the view tree has been determined, we must decide
how to modify the constraint graph. In PSAL, the rules for doing this are
stated in the form of constraint prototypes. The constraint arguments may
either be constants or patterns. As an example, consider the rule that the
numbers of items in successive elements of an enumerated list di�er by 1.
This might be expressed as a rule for an enumerate-proof facet:

19

(:rule (value-add (:child (:sequence-child (:self) :element-list)

:tag)

(:child (:next-child (:self) :element-list)

:tag)

1))

The interpretation of this is as follows. The pattern

(:sequence-child (:self) :element-list)

matches any child of the sequence node that is the :element-list child
of the enumerate-proof facet. In this schema, this child will be a facet of
type element, which has two children, the tag or numeric label of the item,
and the text of the item. Thus the enclosing pattern, which is

(:child (:sequence-child (:self) :element-list) :tag),

matches the tag, which we would like to have printed as a number that is
the index of this item in the enumerated list.

The second argument is similar, except that the :next-child pattern will
match the next member of a sequence after the last one that was matched
by a pattern in the current rule.

Therefore this rule will match the tags of all successive pairs of elements
in the enumerated list. The semantics of this rule require a value-add con-
straint to be created between all such matching pairs, with a third argument
(the di�erence in values) of 1. If another rule speci�es that the �rst ele-
ment of the list should have a value of 1, all the elements will be numbered
correctly.

It is important to node that rules are speci�ed as part of a facet de�nition,
and contain only patterns that refer to descendants of that facet. There are
no \free-standing" rules, or rules that can match parents or more distant
ancestors. This simpli�es the implementation quite a bit, since when one
creates or deletes a facet, it is relatively easy to determine what other facets
in the tree might have rules that are a�ected by this { one need merely visit
all the ancestors of the a�ected node.

5.4.1 Patterns

All rules are introduced by the :rule keyword in the deffacet form. Pat-
terns may be arbitrarily nested. In the following list of patterns, the form
pat can be any pattern. Note that the only pattern that does not contain

20

another pattern is (:self). This serves to enforce the restriction that all
instances of rules must be rooted at a facet of the type that the rule is being
de�ned for.

The examples in Appendix A may be helpful in understanding the fol-
lowing explanation, since most of the patterns described here are used for
relatively straightforward explanations.

� (:self). This matches a facet of the type this rule is de�ned for.

� (:child pat child-name). This matches the child of the node that
matches pat, which must have the name child-name. For example,

(:child (:self) :abstract)

de�ned for a document node matches the abstract child.

� (:�rst-sequence-child pat child-name). This matches the �rst child
of the sequence node that is the child of pat with name child-name. For
example,

(:first-sequence-child (:self) :author-list)

would match the �rst author in the author list of a document.

� (:last-sequence-child pat child-name). Like :first-sequence-child,
except it matches the last element of a list.

� (:sequence-child pat child-name). This matches any element of the
given sequence.

� (:next-child pat child-name). This pattern allows one to refer to
the results of a previous pattern matching. One and only one :�rst-
sequence-node or :sequence-node pattern with the same pat and
child-name as this one must have appeared already. The :next-child
pattern matches the element immediately after the one that this pat-
tern matched.

� (:prev-child pat child-name). This is like :next-child, except it
matches the element before the previously matched one.

� (:owner pat). This matches the facet that owns the facet matched by
pat. This facet will be in the view that the current view is derived from.

21

� (:our-facet pat). This is the opposite of :owner. It matches the facet
in this view that is owned by the one matched by pat.

� (:type pat type-name). This matches everything that pat matches, if
that happens to be of type type-name. This is useful in a few places {
in particular, when a word in a proof view is owned by a corresponding
word in the base view, we would like to create a constraint between
them that causes their values to be the same. When it is owned by
something else, as is the case for text that appears only in the presen-
tation, we don't want to set up any such constraint. In this case we
would wrap a (:type pattern word) around the thing we are match-
ing.

� (:same number). This matches the same facet that was matched by
the number'th argument to this rule. Arguments are numbered starting
at 1.

� (:all-descendants pat facet-type). This matches all of the descendants
of the facet matched by pat that are of the given type. This pattern
corresponds to multiple arguments to constraints, which are described
in the section on constraint satisfaction. This is a rather odd pattern,
since one instance of a rule using it can match many objects simul-
taneously. However, it seems to be the most straightforward way to
implement such useful things as linebreaking rules and �gure number-
ing.

� (:slot-value pat slot-name). This fetches the value of the named slot,
which should be a reference to a facet. This is required for citations {
the following rule links the :tag children of a citation and its bibentry
object:

(:rule (word-proofs-equal

(:child (:our-facet (:slot-value (:owner (:self))

entry))

:tag)

(:child (:self) :tag)))

22

5.4.2 Variable bindings

One other form may appear in rules, the :binding form. This looks like a
pattern, but it actually a simple mechanism for accessing dynamically scoped
variables.

In a deffacet form, a variable binding such as

(:bind :font-family "Times")

or

(:bind (:font-type :title) "Bold")

may appear. This causes the named variable to be bound to the given value
for all descendants of the facet, or, in the second case, only descendants of
the child named :title. The values must either be constants or lambda-
expressions that compute the actual value from other bindings available at
that facet. An example of the second sort of binding is

(:bind (:width :title) (lambda (doc)

(let ((width (get-binding doc :width)))

(if width (- width 100) 200)))

The interpretation of this is as follows. The doc argument corresponds to
the document-proof facet this rule appears in. The get-binding function
returns the value of the variable at this node in the tree, or nil if there is
no such binding. The function then returns either the current width minus
100, if there is a current width, or 200, if there is none. Note that in this
example there will only be a width de�ned for the document from above if
it is nested inside of another object of a possibly di�erent genre.

A presentation rule may access the bindings visible at the current facet us-
ing the form (:binding var-name). In the title of a document, for instance,
the form (:binding :font-type) might evaluate to "Bold".

5.5 Constraint De�nitions

A constraint can be thought of as a device that can be connected to a set of
values and will enforce a relationship between them. A constraint de�nition
must therefore contain a description of the values it may be connected to,
and a statement of the relationship to be enforced. This statement may

23

be characterized further as an error function, which takes as arguments the
values of the constraint arguments and returns an indication of whether the
constraint is satis�ed, and a number of satisfaction functions, which can be
applied to the arguments of the constraint to cause the constraint to be
satis�ed.

The constraint system is built on top of CLOS, and the arguments to a
constraint are instances of classes. Since in general the values of interest will
be bound to sub-parts of an instance, one may specify a path for an argument.
For instance, if one argument to a constraint is the height of a paragraph,
the path might be given as (bbox yhi), where the paragraph object has a
slot called bbox, which is bound to a bounding-box object which itself has
a slot called yhi.

There are two types of error functions { those that return a boolean value,
and those that return some numerical indication of how far the constraint is
from being satis�ed. The second type is useful for cases where relaxation is
used to solve cyclical systems. In general, the error function may give little
information about how to modify the arguments to the constraint in order
to satisfy it, but in many cases this information can be inferred.

Satisfaction functions have three parts. These are the set of \input"
variables, the set of \output" variables, and the body of the function that
maps from the input to the output. In many cases, only a few combinations
of input and output variables make sense. For instance, in a constraint that
enforces line-breaking, the only argument that may be permissibly changed
is the list of positions of the words.

Here is an example of a defconstraint form.

(defconstraint y-separation

((pos1 graphical :path (pos y))

(height1 graphical :path (bbox yhi))

(pos2 graphical :path (pos y))

(skip constant :path value))

(lambda (pos1 pos2 height1 skip)

(- (+ (+ pos1 height1) skip) pos2))

(((pos1 height1 skip)

(pos2)

((+ skip (+ pos1 height1))))))

There are really only three arguments, but since we want to use two of

24

the components of the �rst object, we repeat it twice. graphical is a class
that includes all objects that have positions and bounding boxes { in almost
all cases the bounding box extends from (0, 0) to (xhi, yhi), and to get the
bounding box with relation to the object's parent, we must translate it by
its position.

The error function is a lambda-form that takes a subset of the arguments
(in this case, all of them) and returns 0 if the constraint is satis�ed and
something other than 0 otherwise. The names in the lambda form must
match the names given to the arguments.

The satisfaction functions are given in a list of (inputs, outputs, function)
tuples. If there is more than one output, the function should return multiple
values using the Common Lisp values construction. In this case, there is
only one satisfaction function because there is only one way to satisfy this
constraint that we want to allow.

Here is another constraint de�nition, which illustrates some other things.

(defconstraint bbox-union

((container graphical :path bbox)

(contents graphical :path bbox yhi :multiple))

(lambda () nil)

(((contents)

(container)

((calculate-bbox-union contents)))))

The :multiple keyword given for the contents argument indicates that
instead of one object being constrained, we wish to constrain a whole set of
objects. In the error function and the satisfaction functions, whenever the
argument appears, it will be bound to a list of the actual values. In this
case, the function calculate-bbox-union takes a list of bounding boxes as
its argument and returns a single bounding box.

The error function above always returns nil. Although this would seem
to pose a problem for the constraint solver, in fact the error function is only
checked when one of the values constrained has changed. Since we have to
calculate the enclosing bounding box anyway to check whether it is still the
correct one, it is simpler to always induce the constraint to satisfy itself. The
solver is careful not to mark values as changed when they are set to the same

25

value they had before, so this technique does not cause extra computation
to occur.

5.6 Constraint satisfaction algorithms

There are a number of constraint satisfaction algorithms that have been de-
veloped in the last decade. Some rely on term rewriting, such as the system
described in [Leler 1988], and others are tied to logic programming, such
as [Saraswat 1989] and [Ja�ar and Lassez 1987]. For incremental constraint
satisfaction, which is what Ensemble-C requires, the most convenient tech-
niques are based on propagation of known values and relaxation.

Propagation of known values is done by starting with the constraints we
know we can satisfy, and using them to determine values for further variables,
which allows us to satisfy more constraints. This process stops either when all
constraints are satis�ed or when none of the constraints that are unsatis�ed
can be solved. In the latter case, we must use relaxation to solve the rest of
the system.

Relaxation can be used to solve cyclic systems. If all the constraints are
numeric and di�erentiable, we can use a simple iterated Newton-Raphson
approximation method to �nd the solutions. For other sorts of constraints, we
must repeatedly solve them in sequence, each time using the values obtained
in the previous iteration. This is rather unreliable and slow, and care should
be taken to avoid cycles in the constraint graph if possible.

Ensemble-C uses these two techniques for constraint satisfaction. A
more detailed description of constraint satisfaction can be found in [Leler
1988].

6 Discussion

Ensemble-C is a prototype system, and its primary role has been that of a
testbed for new ideas, rather than a reliable and e�cient document system.
A number of experiments remain to be done in order to show that the general
approach of the system is appropriate for real-world document preparation.

At this point, it is only possible to create and delete leaf nodes, and the
type of a facet cannot be changed once it is created. This restriction makes
a number of common and useful operations rather expensive and awkward,

26

such as moving sections of a document, and placing a set of existing objects
inside a new environment. In order to support these operations we need to
be able to add and facets into the middle of a tree and move entire subtrees
without deleting and rebuilding them from scratch. The algorithms used for
structural rules and constraint graph maintenance are quite simple-minded,
and would need to be rewritten to handle these cases. The Colander system
[Ballance 1989] has the facilities for dealing with general tree transformations
and truth maintenance, and we may use it for presentation maintenance in
the future.

The current version of ThingLab [Freeman-Benson and Maloney 1988,
Borning et al. 1987] can solve hierarchical constraint systems, where some
constraints are required, and the rest are placed in a hierarchy that deter-
mines the order in which they are solved. In general, not all constraints
need be satis�ed. This strategy allows much more complex systems to be
described and solved. In particular, if Ensemble-C could solve hierarchical
constraints, the management of document layout would be simpli�ed quite
a bit. For example, the rule that the bounding box of an object is the union
of the bounding boxes of its children could be made into an optional rule,
and this would allow us to constrain the width of paragraphs to be their
maximum width as determined by the page layout rules, rather than using
dynamically-scoped :width variables, which is rather awkward.

Another re�nement of the constraint solution process involves priority.
Whereas hierarchy among constraints makes a statement about the �nal
solution, priority makes statements about which constraints should be solved
before others, even if they will later be overridden. This is important for an
interactive system, where we may want a \quick and dirty" solution before
we have the �nal solution. Also, priority can be used to cause views to be
updated in the order in which we are interested in looking at them { we want
the view we are typing in to be dealt with before any others.

If we are to use the same constraint speci�cation mechanism for static
documents, for which local propagation is probably the best constraint so-
lution, and dynamic documents, for which numerical solution techniques are
usually required, the constraint system must be able to tell the two types
of graphs apart. Some work has been done on identifying subgraphs that
can be solved using di�erent techniques [Gosling 1983], and we will require
mechanisms that are similar to this.

As a test of the generality of the Ensemble-C framework, we would like

27

to create an object graphics view with interactive constraint speci�cation,
such as that in ThingLab. Many of the di�cult issues in text document
formatting are not problems for object graphics, since the structure and
presentation rules are generally much simpler.

An example of an editing session using the current Ensemble-C proto-
type is shown in Figure 3. The prototype is written entirely in Common
Lisp, and has not been optimized for speed, but all of the constraint graph
maintenance and constraint satisfaction mechanisms described in this paper
have been implemented.

28

Figure 3: The Ensemble-C Prototype

29

30

References

[Ballance and Van De Vanter 1987] Robert A. Ballance and Michael L.
Van De Vanter. Pan I: An introduction for users. Technical Report
UCB/CSD 88/410, University of California, Berkeley, CA 94720, Septem-
ber 1987. PIPER Working Paper 87-5.

[Ballance et al. 1987] Robert A. Ballance, Michael L. Van De Vanter, and
Susan L. Graham. The architecture of Pan I. Technical Report UCB/CSD
88/409, University of California, Berkeley, CA 94720, August 1987. PIPER
Working Paper 87-4.

[Ballance et al. 1990] Robert A. Ballance, Susan L. Graham, and Michael L.
Van De Vanter. The Pan language-based editing system for integrated
development environments. In ACM SIGSOFT Symposium on Software
Development Environments, 1990.

[Ballance 1989] Robert A. Ballance. Syntactic and Semantic Checking in
Language-Based Editing Systems. PhD thesis, University of California,
Berkeley, CA 94720, December 1989. Technical Report UCB/CSD 89/548.

[Borning et al. 1987] Alan Borning, Robert Duisberg, Bjorn Freeman-
Benson, Axel Kramer, and Michael Woolf. Constraint hierarchies. In
Object-Oriented Programming: Systems, Languages, and Applications
(OOPSLA), October 1987, pages 48{60.

[Borning 1979] Alan Borning. Thinglab | A Constraint-Oriented Simula-
tion Laboratory. PhD thesis, Stanford University, July 1979. Technical
Report STAN-CS-79-746, also Xerox SSL-79-3.

[Brooks 1988] Kenneth P. Brooks. A Two-view Document Editor with User-
de�nable Document Structure. PhD thesis, Stanford University, May 1988.
Also Digital SRC Research Report 33, November 1, 1988.

[Chamberlin et al. 1987] D. D. Chamberlin, H. F. Hasselmeier, A. W. Lu-
niewski, D. P. Paris, B. W. Wade, and M. L. Zolliker. Quill: An extensible
system for editing documents of mixed type. In Proceedings of the 21st
Hawaii International Conference on System Sciences, Washington, D.C.,
1987. IEEE Computer Science Press.

31

[Chen 1988] Peehong Chen. A Multiple-Representation Paradigm for Doc-
ument Development. PhD thesis, University of California, Berkeley, CA
94720, July 1988. Also TR UCB/CSD 88/436.

[Freeman-Benson and Maloney 1988] Bjorn N. Freeman-Benson and John
Maloney. The deltablue algorithm: An incremental constraint hierarchy
solver. Technical Report 88-11-09, University of Washington, Seattle, WA
98195, November 1988.

[Gosling 1983] James Gosling. Algebraic Constraints. PhD thesis, Carnegie-
Mellon University, Pittsburgh PA 15213, May 1983. TR CS-83-132.

[Harrison and Munson 1990] Michael A. Harrison and Ethan V. Munson.
Numbering document components. Technical Report 90/568, University
of California, Berkeley, CA 94720, June 1990.

[Ja�ar and Lassez 1987] Joxan Ja�ar and Jean-Louis Lassez. Constraint
logic programming. In ACM Symposium on Principles of Programming
Languages, 1987, pages 111{119.

[Lamport 1986] Leslie Lamport. LaTEX: A Document Preparation System.
Addison-Wesley, 1986.

[Leler 1988] WmLeler. Constraint Progamming Languages. Addison-Wesley,
1988.

[Munson and Pan 1990] Ethan V. Munson and Derluen Pan. Selections and
snapshots in ensemble. Ensemble Working Paper, May 1990.

[Myers et al. 1989] Brad A. Myers, Dario Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David Kosbie, Philippe Marchal, Ed Pervin, and
John A. Kolojejchick. The Garnet toolkit reference manual: Support for
highly-interactive, graphical user interfaces in lisp. Technical Report CMU-
CS-89-196, Carnegie Mellon University, Pittsburg, PA 15213, November
1989.

[Quint and Vatton 1986] V. Quint and I. Vatton. Grif: An interactive sys-
tem for structured document manipulation. In J. C. van Vliet, editor, In-
ternational Conference on Text Processing and Document Manipulation.
Cambridge University Press, 1986, pages 200{213.

32

[Reid 1980] Brian K. Reid. Scribe: A document speci�cation language and
its compiler. PhD thesis, Carnegie-Mellon University, October 1980. Also
TR CMU-CS-81-100.

[Saraswat 1989] Vijay Anand Saraswat. Concurrent Constraint Program-
ming Languages. PhD thesis, Carnegie Mellon University, Pittsburgh, PA
15213, January 1989. Technical Report CMU-CS-89-108.

[Stallman 1986] Richard M. Stallman. GNU Emacs Manual. Free Software
Foundation, Cambridge, MA, fourth edition, February 1986.

[Steele 1980] Guy Lewis Steele, Jr. The De�nition and Implementation of
a Computer Programming Language. PhD thesis, Massachusetts Institute
of Technology, Cambridge MA 02139, August 1980. Also MIT AI Lab TR
595.

33

34

A Examples

The following are examples of structural and presentation schemas for a text
document genre.

The �rst �le de�nes a simple grammar for an article style. Note that the
grammar rule for the section facet type is recursive { a section contains a
title, some text, and then a list of sections. Since the minimum number of
subsections is 0, the facet creation code won't get into an in�nite loop. This
type of document structure is described more fully in [Harrison and Munson
1990].

A.1 The Text Module

;;; Set up the package stuff. Note that we don't export anything.

;;; The require's and use-package's are omitted for brevity.

(provide "text")

(in-package "text")

;;; Make a genre object. This is mainly a placeholder for

;;; structural schemas.

(defvar *text-genre*

(make-genre "text"))

;;; Make a structural schema. This is a simple article style.

(defvar *article*

(make-grammar *text-genre* "article"

'((document

:children ((:title block)

(:author-list block 1 *)

(:abstract block)

(:section-list section 1 *)

(:bibliography bibliography)))

(section

:children ((:title block)

(:blocks block 0 *)

(:sections section 0 *)))

35

(bibliography

:children ((:entries bibentry 1 *)))

(bibentry

:children ((:author paragraph)

(:title paragraph)

(:journal paragraph)

(:month word)

(:year word)

(:pages word 0 2)))

(block -> paragraph itemize enumerate figure foreign)

(paragraph

:children ((:items item 1 *)))

(itemize

:children ((:element-list block 1 *)))

(enumerate

:children ((:element-list block 1 *)))

(figure

:children ((:stuff foreign)))

(item -> word emphasis definition citation foreign)

(emphasis

:children ((:items item 1 *)))

(definition

:children ((:items item 1 *)))

(citation

:children ((:tag word)))

(word)

(foreign))))

;;; Define the facets we use for the text base view.

(defclass text-base (facet)

()

36

(:documentation "All text facets inherit from this."))

(deffacet document nil (text-base)

(:documentation "The top-level text thing."))

(deffacet section nil (text-base)

(:documentation "A section. Sections can be arbitrarily nested."))

(deffacet bibliography nil (text-base)

(:documentation "A bibliography contains bibentries."))

(deffacet bibentry nil (text-base)

(:documentation "A bibliography entry."))

(deffacet paragraph nil (text-base)

(:documentation "A paragraph."))

(deffacet itemize nil (text-base)

(:documentation "An itemized list."))

(deffacet enumerate nil (text-base)

(:documentation "An enumerated list."))

(deffacet figure nil (text-base)

(:documentation "A figure environment."))

(deffacet emphasis nil (text-base)

(:documentation "An emphasis environment."))

(deffacet definition nil (text-base)

(:documentation "A definition font environment."))

(deffacet citation nil (text-base)

(:slots ((entry :type bibentry

:accessor citation-entry

:documentation "The bibliography entry we're citing.")))

(:creation :initvalue citation-entry

(lambda (facet)

(get-facet-from-user "what this citation should point to"

'bibentry facet)))

(:documentation "A citation, which points to a bibliography entry."))

(deffacet word nil (text-base)

37

(:slots ((value :type string

:initarg :value

:accessor word-value

:documentation "The string that is the word.")))

(:print-method (lambda (word stream)

(format stream "#<word ~S ~S>" (facet-id word)

(if (slot-boundp word 'value)

(word-value word)))))

(:documentation "A word."))

A.2 The Text Proof Module

;;; This stuff is also in the text package. In lots of places there

;;; should be package specifiers but I've taken them out for clarity.

;;;

;;; Rules for maintaining bounding boxes have been temporarily moved

;;; the presentation system for simplicity. They really belong here,

;;; though.

(provide "text-proof")

(in-package "text")

;;; Make a presentation schema to hang all the facet stuff off of.

(defvar *article-proof-default*

(make-pschema *article* "article-proof-default"))

;;; First let's define some classes that don't actually correspond

;;; to facet types.

(defclass text-proof (graphical)

()

(:documentation "All text proof facets inherit from this."))

(defclass block-proof (text-proof)

()

(:documentation "A block-like thing."))

(defclass item-proof (text-proof)

()

(:documentation "An item-like thing."))

38

;;; Now define the facets.

(deffacet document-proof *article-proof-default* (text-proof)

;; We have to add the word "ABSTRACT" to the document, before

;; the abstract paragraph.

(:structure :insert-before :abstract :abstract-word

(word-proof

:slots ((value "ABSTRACT"))))

(:structure :insert-before :bibliography :bibliography-word

(word-proof :slots ((value "Bibliography"))))

;; First define some rules to maintain the spacing of the

;; children of this node. See the constraint definitions

;; at the bottom of this file for a description of the arguments.

(:rule (at-y-pos (:child (:self) :title) 20)

(y-separation (:child (:self) :title)

(:same 1)

(:child (:self) :author-list) 10)

(y-separation (:child (:self) :author-list)

(:same 1)

(:child (:self) :abstract-word) 10)

(y-separation (:child (:self) :abstract-word)

(:same 1)

(:child (:self) :abstract) 5)

(y-separation (:child (:self) :abstract)

(:same 1)

(:child (:self) :section-list) 10)

(y-separation (:child (:self) :section-list)

(:same 1)

(:child (:self) :bibliography-word) 10)

(y-separation (:child (:self) :bibliography-word)

(:same 1)

(:child (:self) :bibliography) 10)

39

(at-y-pos (:first-sequence-child (:self) :section-list) 0)

(y-separation (:sequence-child (:self) :section-list)

(:same 1)

(:next-child (:self) :section-list) 5)

(at-x-pos (:child (:self) :title) 20)

(at-x-pos (:child (:self) :author-list) 20)

(at-x-pos (:child (:self) :abstract) 20)

(at-x-pos (:child (:self) :section-list) 20)

(at-x-pos (:child (:self) :bibliography) 20)

(x-centered (:child (:self) :abstract-word)

(:same 1)

(:self))

(x-centered (:child (:self) :bibliography-word)

(:same 1)

(:self)))

;; Maintain section numbers. These rules are duplicated in the

;; section facet definition for subsections.

(:rule (at-section-number (:first-sequence-child (:self)

:section-list) 1)

(add-section-number (:sequence-child (:self) :section-list)

(:next-child (:self) :section-list) 1))

;; Bind a bunch of variables used for fonts and linebreaking.

(:bind :font-family "Times"

(:font-type :title) "Bold"

(:font-type :author-list) "Italic"

(:font-type :abstract-word) "Bold"

(:font-type :abstract) "Roman"

(:font-type :section-list) "Roman"

(:font-type :bibliography-word) "Bold"

(:font-type :bibliography) "Roman"

(:font-size :title) 16

(:font-size :author-list) 14

40

(:font-size :abstract-word) 12

(:font-size :abstract) 12

(:font-size :section-list) 12

(:font-size :bibliography-word) 12

(:font-size :bibliography-word) 12

(:indent :title) 0

(:indent :author-list) 0

(:indent :abstract) 0

(:indent :section-list) 10

(:indent :bibliography) 0

:interword-space 6

(:baseline-skip :title) 18

(:baseline-skip :author-list) 16

(:baseline-skip :abstract) 14

(:baseline-skip :section-list) 14

(:baseline-skip :bibliography) 14

(:fill-format :title) :centered

(:fill-format :author-list) :centered

(:fill-format :abstract) :flush-right

(:fill-format :section-list) :flush-right

(:fill-format :bibliography) :flush-right)

;; Finally, deal with widths. These are all computed bindings.

;; This is not the best way to do it -- we should have hierarchical

;; constraints.

(:bind (:width :title) (lambda (doc)

(let ((width (get-binding doc :width)))

(if width (- width 100) 200)))

(:width :author-list) (lambda (doc)

(let ((width (get-binding doc :width)))

(if width (- width 100) 200)))

(:width :abstract) (lambda (doc)

(let ((width (get-binding doc :width)))

(if width (- width 50) 250)))

(:width :section-list) (lambda (doc)

(let ((width (get-binding doc :width)))

(if width width 300))))

(:owner-type document)

41

(:documentation "The top-level text thing."))

(deffacet section-proof *article-proof-default* (text-proof)

(:slots ((number :accessor section-proof-number

:documentation "This is a list of numbers.")))

(:structure :insert-before :title :section-number

(word-proof))

(:rule (at-y-pos (:child (:self) :section-number) 10)

(at-y-pos (:child (:self) :title) 0)

(x-separation (:child (:self) :section-number)

(:same 1)

(:child (:self) :title) 5)

(y-separation (:child (:self) :title)

(:same 1)

(:child (:self) :blocks) 5)

(at-y-pos (:first-sequence-child (:self) :blocks) 0)

(y-separation (:sequence-child (:self) :blocks)

(:same 1)

(:next-child (:self) :blocks) 5)

(at-relative-section-number (:first-sequence-child (:self)

:sections)

(:self) 1)

(y-separation (:child (:self) :blocks)

(:same 1)

(:child (:self) :sections) 5)

(at-y-pos (:first-sequence-child (:self) :sections) 0)

(y-separation (:sequence-child (:self) :sections)

(:same 1)

(:next-child (:self) :sections) 5)

(add-section-number (:sequence-child (:self) :sections)

(:next-child (:self) :sections) 1)

(format-section-number (:self) (:child (:self) :section-number))

42

(number-figures (:self) (:all-descendants (:self) figure-proof)))

(:bind (:font-type :title) "Italic"

(:font-size :title) 14

(:fill-format :title) :ragged-right

(:width :title) (lambda (sec)

(- (get-binding sec :width) 100))

(:indent :title) 0)

(:owner-type section)

(:documentation "A section."))

(deffacet bibliography-proof *article-proof-default* (text-proof)

(:structure :sorted :entries

(lambda (ent1 ent2)

(string-lessp (bibentry-proof-tag ent1)

(bibentry-proof-tab ent2))))

(:rule (at-y-pos (:first-sequence-child (:self) :entries) 0)

(y-separation (:sequence-child (:self) :entries)

(:same 1)

(:next-child (:self) :entries) 10))

(:owner-type bibliography)

(:documentation "A bibliography."))

(deffacet bibentry-proof *article-proof-default* (text-proof)

(:slots ((tag :accessor bibentry-proof-tag

:documentation "The tag string for this entry.")))

;; :rewrite rules are passed a description, in structural schema format,

;; of the stuff below here, and should pass back another structural

;; schema that says what to make the thing.

(:structure :rewrite t t

(lambda (body)

"This rule takes a bibliography entry and formats it."

(format-bib-entry body)))

(:rule (at-y-pos (:child (:self) :tag) 10)

(at-y-pos (:child (:self) :body) 0)

43

(at-x-pos (:child (:self) :tag) 0)

(x-separation (:child (:self) :tag)

(:same 1)

(:child (:self) :body) 5))

(:owner-type bibentry)

(:documentation "A bibliography entry."))

;; The major thing that paragraphs do is linebreaking. Note the use of

;; :all-descendants.

(deffacet paragraph-proof *article-proof-default* (block-proof)

(:rule (linebreaking (:self)

(:binding :width)

(:binding :indent)

(:binding :baseline-skip)

(:binding :fill-format)

(:all-descendants (:self) word-proof)

(:same 6)))

(:owner-type paragraph)

(:documentation "A paragraph."))

;;; These two are interesting because they have extra children.

;;; The abstract has an extra child too, but it's not a separate

;;; facet type. The itemize-proof facet has a list of elements,

;;; each of which contain a tag and a body.

(deffacet itemize-proof *article-proof-default* (block-proof)

(:structure :replace-sequence-child :element-list :element

(element-proof

:children ((:tag (word-proof

:slots ((value "*"))))

(:item (child)))))

(:rule (y-separation (:sequence-child (:self) :element-list)

(:sequence-child (:self) :element-list)

(:next-child (:self) :element-list) 10))

(:owner-type itemize)

(:documentation "Itemize environment."))

(deffacet enumerate-proof *article-proof-default* (block-proof)

(:structure :replace-sequence-child :element-list :element

44

(element-proof

:children ((:tag (word-proof))

(:item child))))

(:rule (y-separation (:sequence-child (:self) :element-list)

(:same 1)

(:next-child (:self) :element-list) 10)

(value-set (:child (:first-sequence-child (:self) :element-list)

:tag) 1)

(value-add (:child (:sequence-child (:self) :element-list) :tag)

(:child (:next-child (:self) :element-list) :tag) 1))

(:owner-type enumerate)

(:documentation "Enumerate environment."))

(deffacet element-proof *article-proof-default* (text-proof)

(:rule (x-separation (:child :tag) (:child :element) 20))

(:documentation "An item with its tag."))

(deffacet figure-proof *article-proof-default* (block-proof)

(:slots ((number :accessor figure-proof-number

:documentation "This is a number.")))

(:structure :insert-before :stuff :figure-number

(word-proof))

(:rule (at-y-pos (:child (:self) :stuff) 0)

(y-separation (:child (:self) :stuff)

(:same 1)

(:child (:self) :figure-number) 10)

(format-figure-number (:self) (:child (:self) :figure-number))))

(deffacet emphasis-proof *article-proof-default* (item-proof)

(:bind :font-type "Italic")

(:owner-type emphasis)

(:documentation "Emphasis font environment."))

(deffacet definition-proof *article-proof-default* (item-proof)

(:bind :font-type "Bold")

45

(:owner-type definition)

(:documentation "Definition font environment."))

(deffacet citation-proof *article-proof-default* (item-proof)

(:rule (citation-text-equals (:child (:slot-value (:owner (:self))

citation-entry) :tag)

(:child (:self) :tag)))

(:owner-type citation)

(:documentation "Citation."))

(deffacet word-proof *article-proof-default* (item-proof)

(:slots ((value :type string

:initform ""

:accessor word-proof-value

:documentation "What it says.")

(font :accessor word-proof-font

:documentation "This word's font.")))

(:rule (word-bbox (:self) (:self) (:self))

(is-font (:self) (:binding :font-family) (:binding :font-type)

(:binding :font-size))

(word-value-equals (:type (:owner (:self)) word) (:self)))

(:property :is-visible t)

(:owner-type word)

(:print-method (lambda (word stream)

(format stream "#<word-proof ~S ~S>" (facet-id word)

(if (slot-boundp word 'value)

(word-proof-value word)))))

(:documentation "A word."))

;;; ===

;;; Now we define all the constraints that are mentioned in

;;; the above rules.

(defconstraint y-centered

((in-pos graphical :path (graphical::pos geometry::y))

(in-height graphical :path (graphical::bbox geometry::yhi))

(out-height graphical :path (graphical::bbox geometry::yhi)))

(lambda (in-pos in-height out-height)

(- in-pos (/ (- out-height in-height) 2)))

46

(((in-height out-height) (in-pos)

((/ (- out-height in-height) 2)))))

(defconstraint at-y-pos

((facet graphical :path (graphical::pos geometry::y))

(posvalue constant :path constraint::value))

(lambda (posvalue facet) (equal posvalue facet))

nil)

(defconstraint y-separation

((first-pos graphical :path (graphical::pos geometry::y))

(first-height graphical :path (graphical::bbox geometry::yhi))

(second-pos graphical :path (graphical::pos geometry::y))

(skip constant :path constraint::value))

(lambda (first-pos second-pos first-height skip)

(- (+ (+ first-pos first-height) skip) second-pos))

(((first-pos first-height skip) (second-pos) ((+ skip

(+ first-pos

first-height))))))

;;; -----

(defconstraint x-centered

((in-pos graphical :path (graphical::pos geometry::x))

(in-width graphical :path (graphical::bbox geometry::xhi))

(out-width graphical :path (graphical::bbox geometry::xhi)))

(lambda (in-pos in-width out-width)

(- in-pos (/ (- out-width in-width) 2)))

(((in-width out-width) (in-pos)

((/ (- out-width in-width) 2)))))

(defconstraint at-x-pos

((facet graphical :path (graphical::pos geometry::x))

(posvalue constant :path constraint::value))

(lambda (posvalue facet) (equal posvalue facet))

nil)

47

(defconstraint x-separation

((first-pos graphical :path (graphical::pos geometry::x))

(first-height graphical :path (graphical::bbox geometry::xhi))

(second-pos graphical :path (graphical::pos geometry::x))

(skip constant :path constraint::value))

(lambda (first-pos second-pos first-height skip)

(- (+ (+ first-pos first-height) skip) second-pos))

(((first-pos first-height skip) (second-pos) ((+ skip

(+ first-pos

first-height))))))

;;; -----

(defconstraint linebreaking

((para-width paragraph-proof :path graphical::bbox)

(width-hack constant :path constraint::value)

(initial-indent constant :path constraint::value)

(baseline-skip constant :path constraint::value)

(format constant :path constraint::value)

(word-bbox word-proof :path graphical::bbox :multiple)

(word-pos word-proof :path graphical::pos :multiple))

(lambda () nil)

((t (word-pos) ((linebreak-words width-hack initial-indent baseline-skip

format word-bbox)))))

;;; -----

(defconstraint value-add

((first word-proof :path value)

(second word-proof :path value)

(incr constant :path constraint::value))

(lambda (first second incr)

(let ((fval (read-from-string first))

(sval (read-from-string second)))

(equal (+ first incr) second)))

(((first incr) (second) ((format nil "~d" (+ (read-from-string first)

incr))))))

48

(defconstraint value-set

((word word-proof :path value)

(value constant :path value))

(lambda (word value) (equal word value))

nil)

;;; -----

(defconstraint at-section-number

((section section-proof :path number)

(num constant :path constraint::value))

(lambda () nil)

(((num) (section) ((list num)))))

(defconstraint at-relative-section-number

((section section-proof :path number)

(parent section-proof :path number)

(num constant :path constraint::value))

(lambda () nil)

(((parent num) (section) ((append parent (list num))))))

(defconstraint add-section-number

((prev section-proof :path number)

(this section-proof :path number)

(incr constant :path constraint::value))

(lambda () nil)

(((prev incr) (this) ((append (butlast prev)

(list (+ (car (last prev)) incr)))))))

(defconstraint format-section-number

((number section-proof :path number)

(word word-proof :path value))

(lambda () nil)

49

(((number) (word) ((do ((str (format nil "~d" (car number)))

(nums (cdr number) (cdr nums)))

((null nums) str)

(setf str (format nil "~a.~d" str (car nums))))))))

(defconstraint number-figures

((section section-proof :path number)

(figures figure-proof :path number :multiple))

(lambda () nil)

((t (figures) ((do* ((num 1 (+ num 1))

(figs figures (cdr figs))

(ret (list (append section (list num)))

(cons (append section (list num)) ret)))

((null figs) (nreverse ret)))))))

;;; -----

(defconstraint at-figure-number

((figure figure-proof :path number)

(num constant :path constraint::value))

(lambda (figure num) (equal figure num))

nil)

(defconstraint format-figure-number

((number figure-proof :path number)

(section section-proof :path number)

(word word-proof :path value))

(lambda () nil)

(((section number) (word) ((do ((str (format nil "~d" (car section)))

(nums (cdr section) (cdr nums)))

((null nums)

(format nil "~a.~d" str number))

(setf str (format nil "~a.~d" str

(car nums))))))))

;;; -----

(defconstraint word-proofs-equal

50

((src word-proof :path value)

(dst word-proof :path value))

(lambda (src dst) (equal src dst))

(((src) (dst) (src))))

;;; -----

(defconstraint is-font

((word word-proof :path font)

(family constant :path constraint::value)

(type constant :path constraint::value)

(size constant :path constraint::value))

(lambda () nil)

(((family type size) (word) ((get-font family type size)))))

(defconstraint word-bbox

((string word-proof :path value)

(font word-proof :path font)

(bbox word-proof :path graphical::bbox))

(lambda () nil)

(((string font) (bbox) ((window:get-string-bbox string font)))))

(defconstraint word-value-equals

((node word :path value)

(facet word-proof :path value))

(lambda (node facet) (equal node facet))

(((node) (facet) (node))))

51

